SCIART 2016

Acoustic-induced vibration analysis of glass art object

Khalid Elawad¹, Federica Roth², and Janaya Slaughter³, Lillie Cimmerer⁴, Arowa Suliman⁴, Dr. Gymama Slaughter⁴

¹Johns Hopkins University, ²Stanford University, ³Stevenson University, ⁴University of Maryland Baltimore County

Introduction

Why is this important?

- Damage to artifacts has been observed in various museums and has been attributed to some type of vibration
- There are a variety of materials in museums but glass was chosen as the focus for this project
- This project was conducted in service of the Walters Art Museum in Baltimore, Maryland
- Employees at the museum noticed potential effects of this acoustic vibration including but not limited to: opening of cracks, paint chipping, and "walking"
- Incremental damage may also be observed overtime and is not necessarily obvious

Methodology Continued

- Audacity ® was also used as an analysis tool during preliminary experiments
- This program records sounds and creates spectrograms
- \bullet Data could then be exported and examined in Microsoft Excel ${\ensuremath{\mathbb R}}$

Modeling

SolidWorks®

This software was used to model the three glass objects
Each object was measured using a micrometer and a caliper and these measurements were used in the program
The models were then exported to COMSOL Multiphysics

 ß for further analysis

What's being investigated?

- Will vibrations from acoustic noise have negative effects on glass artifacts in museums based on the following variables:
 - Geometry
 - Frequency and intensity of vibrations

Figure 2: Example of audio recording from Audacity®

Figure 3: Example of spectrogram from Audacity®

Preliminary Experiments

Resonant Frequencies

- Resonant frequency is the frequency at which an object naturally vibrates
- Audacity® was used to determine preliminary resonant frequencies of all the artifacts provided
- Each object was struck with a ruler multiple times and a spectrogram was created from the recording
- The frequency corresponding to the maximum magnitude was said to be the resonant frequency

Object	Large Glass Bowl	Glass Vase	Small Wine Glasses
Trial 1	689.0625 Hz	4306.641 Hz	1808.789 Hz
Trial 2	689.0625 Hz	4306.641 Hz	1808.789 Hz
Trial 3	689.0625 Hz	5943.164 Hz	5598.633 Hz
Trial 4	N/A	5943.164 Hz	1808.789 Hz
Trial 5	N/A	5943.164 Hz	1808.789 Hz

Image 3: Models of glass objects created in SolidWorks®

COMSOL Multiphysics®

•Using the eigenfrequency study, we were able to model the vibration of the objects at the different modes or resonant frequencies

Image 4: 2nd and 3rd modes in COMSOL Multiphysics® Modal Analysis

•In each mode, the cup moves in a different way depending on the frequency

Some frequencies may cause motion in multiple directions
The frequencies given in COMSOL Multiphysics® were close to those from the audacity experiment

Results and Conclusions

Image 1: Before and After of display case; walking can be seen in certain objects

Methodology

Instrumentation

- G-Link ® -LXRS ® wireless accelerometers were used to collect data
- Four tri-axial sensing nodes for collecting data and a base station for receiving data were used as well as the Node Commander ® software
- The nodes were configured to sample acceleration data in the z-direction at a rate of 512 Hz
- The acceleration is plotted in a signal as a function of time

Image 2: One of the accelerometer nodes

Analysis Tools

• Data collected was in the time domain and needed to be transformed to the frequency domain using Fast Fourier Transform (FFT) in Matlab ®

70 dB Trial 1	70 dB Trial 1	
70 ub mai i		

Figure 4: Resonant frequencies of the glass objects that were providedEach object was tested at least 3 times; if the first three frequencies matched the test ended if they did not, 2 more trials were done

•For example, the large glass bowl only went through 3 trials •Additionally, objects have more than one resonant frequency

Decibel Determination Experiment

- For future experiments, it was necessary to determine what source volume corresponded to which decibel (dB) level
 A phone app called Decibel 10th® was used to make this determination
- •Music from a phone was amplified by the computer speakers at maximum volume and a dB level was recorded for each phone volume level

The numbers were averaged after 3 trialsThe tone middle "C" was used during testing

	Trial 1	Trial 2	Trial 3	Average
Volume Level	dB Output	dB Output	dB Output	dB Output
1	68	68	66	67
2	69	75	68	71
3	70	69	69	69
4	71	71	70	71
5	75	74	74	74

Figure 1: Example transformation between time and frequency domain (FFT)

Acknowledgements

The authors would like to extend their deepest gratitude to the following for their support and guidance.University of Maryland, Baltimore County

The Walters Art Museum

• The Andrew W. Mellon Foundation

• The SCIART Program

• Saman Nezami, Amirreza Saharkhiz, and Berthel Tate