FABRICATION OF TEMPERATURE MONITORING SYSTEM FOR ART CONSERVATION

Alex Holtschneider, Amulya Shrestha, Jacob Bass, Minhquan Tran Gymama Slaughter, Ankit Baingane, MD Qumural Hassan

University of Maryland, Baltimore County, Baltimore, MD

Introduction

- Currently, monitoring an artwork's temperature requires obtrusive, expensive equipment.
- Being able to produce low cost temperature monitoring systems is imperative for preserving art in all tiers of museums [1]. Resistance temperature detectors (RTDs) have a linear resistancetemperature relationship [2]. Aim: Create a RTD-based system that can wirelessly monitor artwork's temperature.

- Photolithography

- Process of exposing photoresist to UV light to etch patterns onto a substrate.
- Used to fabricate RTD and signal conditioning circuit.

Characterization

Given the linearity of the temperature-resistance relationship with RTDs, it is possible to characterize a linear equation relating them.

Water Bath Testing:

Coated RTD with liquid electrical tape, allowing submersion into water. Measured voltage across RTD in 0.5°C increments. Can determine resistance given voltage and constant current source.

Design and fabricate a resistance temperature detector (RTD) with a standardized reference resistance.

-**Objective**

- Materials AZ400K Acetone HMDS $\operatorname{Cr}_{7}^{+}$ AZP4110 FeCl₃ \bullet Glass or Silicon Buffer Oxide
- Photomask Photoresist Nickel Chromium Glass UV light etches away \bullet photoresist. Photoresist Nickel Chromium Glass Excess photoresist, nickel, and chromium etched away. Nickel

Results:

- V = 0.9263T + 33.926V = Voltage (mV)
 - T = Temperature (°C)
- $R^2 = 0.9996$
 - Extremely linear relationship

Etchant (BOE)

Substrate

Deionized Water

- 1. Spin coat a layer of HMDS onto wafer.
- 2. Spin coat a layer of AZP4110 onto wafer.
- 3. Apply UV light to react photoresist with light.
- 4. Develop photoresist into photomask pattern.
- 5. Etch away excess nickel and excess chromium.

Design

- **Parameters:**
 - Wire thickness = 200 nm.
 - Minimum line width = $200 \mu m$.
 - Spacing between wires = $200 \ \mu m$.
 - Minimum pad size = 25×25 mm = 625 mm².
- **Calculating Wire Length:**
 - R = Reference Resistance = 100Ω at $20 ^{\circ}$ C.
 - $\rho = \text{Resistivity} = 1.2 \times 10^{-7} \,\Omega \bullet \text{m}.$
- A = Cross-sectional area of wire.
- = thickness \times width = 40 μ m². • $R = \frac{\rho L}{A} \longrightarrow 100 = \frac{(1.2 \times 10^{-7})L}{40 \times 10^{-12}} \longrightarrow L = 3.\overline{33} \text{ cm.}$
- Sample Designs:

56 59 54 29 34 39 49 24 **Temperature (°C)**

-Next Steps

- Short Term:
 - Characterize newly fabricated RTDs with reference resistance of 100 Ω .
 - Utilize a more precise temperature control system \bullet and temperature monitoring system.
- Long Term:
 - Integrate a RTD and other sensor into system that can measure an artwork's environment temperature and wirelessly transmit data to a central hub.

FOUNDATION

-Acknowledgements

