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All calculations described here employ periodic DFT 
methods (Hohenberg and Kohn, 1964; Kohn and Sham, 
1965) and are carried out using Quantum Espresso, an 
open source software package (Giannozzi et al., 2009; 
Giannozzi et al., 2017). All atoms are represented using 
GBRV-type ultrasoft pseudopotentials (Vanderbilt, 1990; 
Garrity et al., 2014). A plane-wave cutoff of 40 Ry and 
charge density cutoff of 320 Ry are employed for all 
calculations, in line with similar surface studies (Bennett, 
Jones, Hamers, et al., 2018; Bennett, Jones, Huang, et 
al., 2018; Bennett et al., 2020). Bulk structural 
relaxations use a 6x6x6 k-point grid (Monkhorst and 
Pack, 1976), and the convergence criteria for 
self-consistent relaxations is 5x10-6 eV. Geometry 
optimization of all surface-adsorbate interactions did not 
include fixing any layers, as detailed in Corum et al. 
(2017) where all atoms are free to relax. All calculations 
are performed at the GGA level using the Wu-Cohen 
(WC) modified PBE-GGA exchange correlation 
functional for solids (Perdew et al., 1996; Wu and 
Cohen, 2006).
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To identify, model, and examine possible pollutants 
(adsorbates) and their interactions with a protonated 

aragonite surface

Project Goals

● Aragonite is a stable form of calcium carbonate (CaCO3) 
that occurs at high pressures

● It is found in stalactites, ore minerals, sediments, shells, 
coral, and pearls and is used in historical pigments, 
paints, and stone used in sculptures (e.g. limestone)

● Small molecules (adsorbates) can exacerbate the 
degradation of materials

● Major outdoor pollutants are acidic particulates and 
marine aerosols

● It is valuable to study the interactions between an 
aragonite surface and selected adsorbates

● Adsorption energy is a quantitative value that describes 
the strength of the interactions and provides information 
on how destructive different adsorbates can be

● Conservators and conservation scientists work towards 
understanding the science behind a work of art

● Conservators then create and carry out treatment plans 
based on scientific knowledge
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● DFT was used to analyze the interactions of small molecule 
adsorbates and atmospheric pollutants on a protonated 
aragonite surface

● Low humidity environments should be maintained to avoid 
the detrimental effects of water on CaCO3

● Air filters in museums should specifically target 
sulfur-containing compounds to eliminate SO2, SO3, or 
H2SO4 

● Fluorinated compounds are generally weaker adsorbates 
than their non-fluorinated counterparts; however, their 
negative environmental impacts should not be ignored

● Future iterations of this program may work with additional 
configurations of adsorbates or larger adsorbates related to 
conservation such as citric acid 
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