

Density Functional Theory and Small Molecule-Protonated Aragonite Surface Interactions as Applied to Cultural Heritage

Layla S. Huff,¹ M. Kaylor Stroot,² Xavier J. Welch,¹ Marcus L. Wilson,³ Jessica E. Heimann,⁴ and Joseph W. Bennett⁴ Morgan State University,¹ McDaniel College,² Towson University,³ and University of Maryland Baltimore County⁴

Adsorbate

CH₂COOH

NO₂

CH₂O

CH

CF.

CH₂C(CH₃)₂

CF₃COCF₃

02

CF₁COOH

CF3COCH3

CO2

CH₂COOH

H₂S

HCOOH

SO2

CH₂O

CH₃CHO

CH₃COCH

HCOOH

H₂O

CF₃OH

H₂SO₄

CH₂OH

SO₃

Charge density

difference plots

of CH₃COOH

(C1) (left) and

SO₃ (right) on

the surface

modeled in

VESTA

Configuration

- Aragonite is a stable form of calcium carbonate (CaCO₃) that occurs at high pressures
- It is found in stalactites, ore minerals, sediments, shells, coral, and pearls and is used in historical pigments, paints, and stone used in sculptures (e.g. limestone)
- Small molecules (adsorbates) can exacerbate the degradation of materials
- Major outdoor pollutants are acidic particulates and marine aerosols
- It is valuable to study the interactions between an aragonite surface and selected adsorbates
- Adsorption energy is a quantitative value that describes the strength of the interactions and provides information on how destructive different adsorbates can be
- Conservators and conservation scientists work towards understanding the science behind a work of art
- Conservators then create and carry out treatment plans based on scientific knowledge

Project Goals

To identify, model, and examine possible pollutants (adsorbates) and their interactions with a protonated aragonite surface

All calculations described here employ periodic DFT methods (Hohenberg and Kohn, 1964; Kohn and Sham, 1965) and are carried out using Quantum Espresso, an open source software package (Giannozzi et al., 2009; Giannozzi et al., 2017). All atoms are represented using GBRV-type ultrasoft pseudopotentials (Vanderbilt, 1990; Garrity et al., 2014). A plane-wave cutoff of 40 Ry and charge density cutoff of 320 Ry are employed for all calculations, in line with similar surface studies (Bennett Jones, Hamers, et al., 2018; Bennett, Jones, Huang, et al., 2018; Bennett et al., 2020). Bulk structural relaxations use a 6x6x6 k-point grid (Monkhorst and Pack, 1976), and the convergence criteria for self-consistent relaxations is 5x10-6 eV. Geometry optimization of all surface-adsorbate interactions did not include fixing any layers, as detailed in Corum et al (2017) where all atoms are free to relax. All calculations are performed at the GGA level using the Wu-Cohen (WC) modified PBE-GGA exchange correlation functional for solids (Perdew et al., 1996; Wu and Cohen, 2006).

Acknowledgements

Results & Discussion

The yellow color represents positive charge density (i.e. more charge density when the adsorbate is present), and the huse color represents negative charge density (i.e. more charge density when the adsorbate is not present)

Conclusion

- DFT was used to analyze the interactions of small molecule adsorbates and atmospheric pollutants on a protonated aragonite surface
- Low humidity environments should be maintained to avoid the detrimental effects of water on CaCO₃
- Air filters in museums should specifically target sulfur-containing compounds to eliminate SO₂, SO₃, or H₂SO₄
- Fluorinated compounds are generally weaker adsorbates than their non-fluorinated counterparts; however, their negative environmental impacts should not be ignored
- Future iterations of this program may work with additional configurations of adsorbates or larger adsorbates related to conservation such as citric acid

Wedjat Eye Amulet, Egypt, 1070–664 B.C. (Third Intermediate Period), Aragonite, The Metropolitan Museum of Art, New York

References

- Gettens, R.J., Fitzhugh, E.W., Feller, R.L., 1974. Calcium Carbonate Whites. Studies in Conservation 19 (3) 157–184.
- Corvo, F., Reyes-Trujeque, J., Valdés, C., Villaseñor, F., Cuesta, O., Aguilar, D., Quintana, P., 2010. Influence of air pollution and humidity on limestone materials degradation in historical buildings located in cities under troicial coastal climater. Water. Air: and Sail Pollution 2005. 359-375.
- Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. 136 (3B), B864-B871.
- Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (4A), A1133-A1138.
- Giannozzi, P., et al. 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.-Condens. Mat. 29 (46), 465901.
- Giannozzi, P., et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.-Condens. Mat. 21 (39), 395502.
- Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41 (11), 7892-7895.
- Garrily, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D., 2014. Pseudopotentials for high-throughput DF calculations. Comp. Mater. Sci. 81, 446-452.
- Bennett, J.W., Jones, D.T., Hamers, R.J., Mason, S.E., 2018. First-principles and thermodynamics study of compositionally tuned complex metal oxides: Cation release from the (001) surface of Mn-rich lithium nickel manganese coabit oxide. Inorg. Chem. 57 (21), 13300–13311.
- Bennett, J.W., Jones, D., Huang, X., Hamers, R.J., Mason, S.E., 2018. Dissolution of complex metal oxides fron first-principles and thermodynamics: Cation removal from the (001) Surface of Li(Ni₁₂Mn₁₂Co₁₂)O₂ Environ. Sci. Technol. 52 (10), 5792-5802.
- Bennett, J.W., et al, 2020. Emerging investigator series: first-principles and thermodynamics comparison of compositionally-tuned delafossites: cation release from the (001) surface of complex metal oxides.
- Monkhorst, H.J., Pack, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13 (12), 5188-5192. Corum, K.W., Huang, X., Bennett, J.W., Mason, S.E., 2017. Systematic density functional theory study of the structural and electronic properties of constrained and fully relaxed (0 0 1) surfaces of alumina and
- hematite. Mol. Simulat. 43 (5-6), 406-419. Perdew, J.P., Burke, K., Errozethof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18), 3665-3668.
- Wu, Z., Cohen, R.E., 2006. More accurate generalized gradient approximation for solids. Phys. Rev. B 73 (23), 235116.